
Printed April 16, 2009
Introduction to Software 
Architecture and Other 
Confusing Topics

James Snyder

These readings provide an introduction to what software 
architecture is and is not. Additionally, important topics are 
presented to clarify how design and engineering impacts 
architecture.1
The purpose of this work is to provide an intellectual framework for a self-
paced study in the topics of software architecture, frameworks, design patterns, 
and object-oriented software construction. This document is organized as a 
series of summary discussions on relevant topics with supplemental readings 
from selected book chapters and papers. Readings will be pointed out in side-
bar comments adjoining summary discussions of the topic. It is important to 
note that the summaries assume completion of the readings.

Who Should Read This? This course assumes that you have programmed in some language or have 
managed a group of developers. Even if you have not, it will provide clarifica-
tion of many of the notions thrown around in software development circles 
today.

As a reader, you will get the maximum utilization of this material if you 
have programmed in some object-centered programming environment such as 
Scheme, CLOS, Smalltalk, Eiffel, Java, or even C++. Experience with Abstract 
Data Types is also helpful even if they were developed in older languages such 
as C, Pascal, Ada, or Modula-2.

Lastly, the format of the document was setup with large margins on the left 
to allow you to take copious notes as you read, think, and become stark-raving 

1. This work is currently under revision for a content update. 
For updates email jdsnyderii@alumni.cmu.edu
Copyright 1999 to 2009 — This is an unpublished, protected work 1



mad with the preposterous pontifications of perilous, persnickety prose. In 
other words, fasten your seat belt because we are going down a road that can be 
quite dangerous.

The Importance of 
Terminology

One of the reasons that so much confusion exists about the concepts cov-
ered in this course is that appropriate use of terminology has not been a prior-
ity. Several classic examples of muddled terminology are given below.

Software Engineering. Unfortunately, the term software engineering is not 
really about engineering in the strictest sense, it is about software development. 
Development consists of design (the formulation of a solution to a well-defined 
problem) and implementation (the combination of implementation technolo-
gies into something built). However, software engineering as a term was pub-
lished in the literature and has since been a fixture much like Xerox for copiers 
and Kleenex for tissues.1 A good characterization of engineering is given in 
[Shaw and Garlan 1996] page 6:

Engineering relies on codifying scientific knowledge about a technical problem 
domain in a form that is directly useful to the practitioner, thereby providing 
answers for questions that commonly occur in practice. Engineers of ordinary 
talent can then apply this knowledge to solve problems rather than relying 
always on virtuoso problem solving.

Transparent Computing. Being from a computer science background, I have 
happily used the term transparent to describe varied characteristics of a system 
design. I have gratuitously and incorrectly used the following phrases on many 
occasions:

• I designed a transparent interface between classes

• X-Windows is a transparent windowing system

• My distributed object system is based on location transparency

• The communications layers are based on a transparent connection mecha-
nism.

So, now that we can, by example, transparently see the definition of trans-
parent, it should be clearly obvious that the meaning of transparent is to 
“clearly see the internal workings of an artifact.” To make the point more 
clearly, let me pose the following question. Would you buy a transparent house? 
Unless you like people seeing you in your underware[sic]2 in the morning, I 
think not. So, why would we propose to describe computing transparently? 

1. The term was published by NATO in 1968 and has not left us since [Shaw and Garlan 
1996], page 6.

2. No, I don’t mean underwear.
2 Introduction to Software Architecture and Other Confusing Topics



Because we usually mean to say something like opaque, independent, or seamless 
instead of transparent—and from here forward I expect that you will. You can 
get a more complete description of this term in [Neumann 1996].

Is It A Class Or Object. If you consider yourself a software developer, can you 
clearly articulate the difference between a class and an object? Let me first state 
that a common incorrect answer is that there is no difference—there really is. 
More importantly, without being able to articulate the difference, confusion 
about design description or intent is bound to increase.

A second answer that is also incorrect is that classes exist at compile time, 
and objects exist at runtime. This description may capture some aspects of cor-
rectness for some programming languages, but as time progresses, this charac-
terization continues to be less true (e.g. Java is reflexive). Still however, there 
exists a distinction between these terms that must be well-understood before 
people can properly communicate about software designs. This distinction also 
relates to questions about the suitability of pictorial notations to support design. 
A more precise definition of classes and the suitability of notations will be dis-
cussed in later sections.

Simulation-Based Design. In order to realize a simulation of a system, we 
need to have a pretty detailed model of how the system will behave. Effectively 
what we are doing is using the simulation results to analyze the solution cap-
tured in the simulation model that we hope solves problem.

Therefore, we have already designed the solution to such a degree as to be 
able to model it in the computer. Therefore, the simulation does not help us 
design, it helps us analyze specific models of design solutions. Simply put, the 
technique named simulation-based design is engineering analysis technique.

So What Is the Big Deal. Well, I guess that depends on what the definition of 
is — is1. In all seriousness, we need to bring rigorous definitions to many terms 
because we need to use them to communicate about and describe designs with-
out ambiguity. For example, when a circuit designer draws the symbol for a 
resistor, it means something concrete and precise. When a building architect 
draws a line on the paper, it is in the context of a drawing scale and means 
something precise such as a wall edge or window. We find the same notions in 
everyday life such as traffic signals and signs.

1. For those of you who are not up on riveting politics, this phrase was used by Presi-
dent Clinton in response to a question posed during a deposition.

Rx
Introduction to Software Architecture and Other Confusing Topics 3



An Initial Definition for Software Architecture
As a discipline, we need to be able to rely on such concrete definitions of 
terms to be able to create a broader understanding of software development. So, 
this course is the first place where you can practice and struggle to bring matu-
rity to the field.

An Initial Definition for Software Architecture

Rather than wait for the grand finale, it is best to get the a working defini-
tion out into the open now. A software architecture is the realization of the soft-
ware artifacts in their operating environment. More generally, architecture is the 
well-intentioned combination and placement of design elements to achieve a specific set 
of functionality. The implication of these definitions is that software architecture 
is a destination not a beginning.

So, this definition probably goes against every grain in your body from 
what you have been exposed to in the past. You might be saying to yourself, 
“hey, what about things like layered architectures?” These notions are in fact 
really architectural styles or organizing principles and will be covered in greater 
detail later on1.

Creating a lucid and coherent understanding of software architecture is 
challenging for both authors and readers of the subject. The introduction pro-
vided here will attempt to tackle the subject by providing a discrimination 
between the different aspects of software development — that is — how design 
and engineering lead to architecture.

Since the working definition is fairly severe compared to other definitions, 
it is important to justify it in concrete terms. The most appropriate way to justify 
the definition is to look outside the realm of software development to other 
design disciplines. The two examples provided here are from building architec-
ture and computer architecture.

Architecture and 
Buildings

People have been working for thousands of years to understand and com-
municate the architecture of the built environment — in other words buildings. 
When we talk about a Gothic cathedral, we characterize the architectural style of 
the building. However, when we talk about the Notre Dame being Gothic and 
good architecture, it is the building itself in its environment that is the architec-
tural product being evaluated against a plethora of criteria. The building is 
architecture while Gothic is style.

1. This is again an unfortunate lack of precision in terminology. 
4 Introduction to Software Architecture and Other Confusing Topics



An Initial Definition for Software Architecture
Architecture and CPUs Another common definition of architecture is found in the field computer 
architecture. CPUs such as the Pentium or PowerPC are the architecture. We 
refer to the instruction set of the CPU when describing what the CPU can do. 
When we talk about the style of the CPU we conjure up terms like a Reduced 
Instruction Set CPU (RISC) or a Complex Instruction Set CPU (CISC). Similarly, 
we talk about pipelined architectural styles to characterize how instructions are 
processed and what processing optimizations are introduced to get speedup.

Architecture and 
Software

First, I need to point out that all the fuss about architecture is due to the fact 
that most problems require more than one person to realize. So, we need to 
exclude “academic” problems from the discussion1. Second, when it comes to 
software, the term architecture has been so overloaded that it is now marginally 
useful. If you have ever been involved in the development of a software system 
at the early phases of development, you have more than likely been exposed to 
people who demand to see your “architecture” (e.g. your UML class diagrams) 
so they can decide if it is “good”. In reality, they should be asking questions 
like:2

READING ASSIGNMENT 1
Read Chapter 1 of [Cooper 1999] for 
in important lesson in user-centered 
thinking. “Good” architecture 
requires the architect to explicitly and 
intentionally address good user inter-
actions as part of the design process.

• What are your organizing principles?

• Have you properly captured the requirements of the users?

• How do you expect the software solutions you develop to enhance or change 
things as they are done today?

• Do you understand the complexity and design rationale of the existing soft-
ware systems you must interface with so as not to break them?

• How are you going to organize the design process participants so that they 
have the information they need, when they need it, and in a form that is 
complete for their needs?

An important software architecture reference is [Shaw and Garlan 1996]. 
While they implicitly or explicitly provide similar perspectives, they do not 
maintain as clear of a distinction between architectural style, design, and engi-
neering. None the less, their definition of software architecture is important and 
is given below:

1. In fact most classroom problems are designed to graded on an individual basis and 
are not really representative of interesting problems.

2. To answer these questions, system architects need to understand the real-world sys-
tems they are designing to. However, understanding does not come in an instanta-
neous flash and therefore requires an incremental accumulation of knowledge to 
validate understanding. The process of formally capturing knowledge or real-world 
systems as they exist is called Domain Modeling. We would like computational support 
because domain modeling is a knowledge “chunking” problem and is hard to do 
without computer support much like complex document construction is hard to do 
without support.
Introduction to Software Architecture and Other Confusing Topics 5



A Characterization of Design
READING ASSIGNMENT 2
Read Chapters 1 and 2 of [Shaw and 
Garlan 1996]. Note that the authors’ 
definitions are not as crisp as we 
would like in this work. While it is 
probably the best description to date, 
a distinction between realized artifacts 
and design characteristics is not 
maintained.

The architecture of a software system defines that system in terms of computa-
tional components and interactions among those components. Components are 
such things as clients and servers, databases, filters, and layers in a hierarchi-
cal system. Interactions among components at this level of design can be sim-
ple and familiar, such as a procedure call and shared variable access. But they 
can also be complex and semantically rich, such as client-server protocols, 
database-accessing protocols, asynchronous event multicast, and piped 
streams.

In addition to specifying the structure and topology of the system, the architec-
ture shows the correspondence between the system requirements and ele-
ments of the constructed system, thereby providing some rationale for the 
design decisions. At the architectural level, relevant system-level issues typi-
cally include properties such as capacity, throughput, consistency, and compo-
nent compatibility.

More generally, architectural models clarify structural and semantic differences 
among components and interactions. These architectural models can often be 
composed to define larger systems. Ideally, individual elements of the architec-
tural descriptions are defined independently, so that they can be reused in dif-
ferent contexts. The architecture establishes specifications for these individual 
elements, which may themselves be refined as architectural subsystems, or 
implemented in a conventional programming language.

SIDEBAR
Supplemental support for these char-
acterizations can be found in [Monroe 
et al. 1997].

In more general terms, the term architecture is used here in reference to a 
physical, realized artifact. We need to use terms like organization, design, 
model, description, configuration, or style to describe notions about something 
not yet realized or to characterize aspects of an artifact.

The above definition provides two important notions. First, software archi-
tectures can be used recursively. Second, elements in the software architecture 
should be designed for reuse. To understand this point, we need to turn our 
attention to design.

A Characterization of Design

Having hopefully clarified the notions of style and architecture, we are still 
faced with a fundamental question. How do we build something so that in the 
end it is good architecture? We need a design to evaluate, and it is this term that 
many people mean when they say architecture. The design is used to communi-
cate the way we believe the world ought to be before it is actually realized. It is 
also important to state that design is not engineering. A simple rule of thumb to 
discriminate between design and engineering is “if you are not measuring 
something, it’s not engineering.”
6 Introduction to Software Architecture and Other Confusing Topics



A Characterization of Design
Hopefully we have established that what we need to be discussing is how 
to go about designing software systems that lead to good software architecture. 
To understand this, we need to have a working definition of software design.

Design as Problem 
Solving

The definition of software architecture given in [Shaw and Garlan 1996] 
reflects the general, iterative nature of software design; that is, software design 
is the process of decomposing requirements into subproblems, finding solu-
tions to those subproblems that can be implemented, and synthesizing these 
solutions into a comprehensive whole that meets all of the system’s require-
ments as shown in Figure 1 below1.

FIGURE 1. Problem Solving by Decomposition

READING ASSIGNMENT 3
Read Chapter 5 of [Simon 1981] enti-
tled “The Science of Design”

As subproblems become solvable, they lead to many design alternatives. 
Alternative solutions are combined and evaluated against many criteria for 
“goodness” until a whole solution is formed. Another perspective of this view 
of the world is shown in Figure 2 below. Essentially, requirements lead to a 
design problem that needs to be solved and can hopefully be clearly described. 
Given a problem, we then need to decompose that problem until solvable sub-
problems can be found, then their solutions are synthesized into a larger solu-
tions until a complete solution is formed. As we discover things about the 
problem we are trying to solve, we may refine our requirements as indicated by 
the dashed arrows in Figure 2.

1. Note that a very important design concept is problem definition and not just about 
solutions — problem definition is actually the more difficult part.

Design Problem

Design Solution

LEGEND:
Introduction to Software Architecture and Other Confusing Topics 7



A Characterization of Design
FIGURE 2. Design From Requirements to Implementation

Iteration in Design 
Processes

In general, the activities shown in Figure 2 are done on a scale that is pro-
portional to the problem. Ideally, we would like the requirements to solution 
implementation to occur inside one person’s head thereby to reduce the need 
for communication between people. But, most interesting problems are bigger 
than one person can handle when constrained by either time or complexity. So 
we parcel the work out.

READING ASSIGNMENT 4
Read Chapter 2 of [Brooks 1975].

Many people assume that work and time are interchangeable thereby 
adopting the Mongolian Hoard Theory of Management — if one person takes 1,000 
hours to do a job, 1,000 people can do the job in an hour. However, we all know 
that using this theory in practice creates all kinds of ambiguities as a result of 
information loss during communication. We have now created a fundamental 
paradox. Design lives somewhere between these two extremes.

As we decompose a problem into subproblems, we effectively create 
another design problem in which the process described in Figure 2 can be recur-
sively applied1. As a result, we need to know when to stop decomposing a 
problem (i.e. when does recursion terminate?). The answer is really quite sim-
ple in practice. When the entire process can fit in one persons head — require-
ments to implementation — we can stop decomposing the problem. We can also 
describe the stages of decomposition by the phases a system design goes 
through as shown in Figure 3. Essentially, the notions of requirements to imple-
mentation keep getting broken down into smaller problem areas.

READING ASSIGNMENT 5
Read the papers by [Akin et al. 1995] 
and [Flemming and Chien. 1995]. 
Note that the term Architectural Pro-
gramming has nothing to do with soft-
ware. These papers are from the 
Building Design literature to show 
well-formed ideas of design problems 
and design solutions.

For example, if we have a design solution (e.g. a Factory Pattern) available 
to us, we will need to implement the solution. Notice that we again have 
requirements, design problems, solutions, and implementations even at this 
low level in the design process. However, the nature of the requirements, prob-
lems, and solutions change as we progress down the stages of design. The spec-
ificity of these problem/solution pairs also increases as we move down the 
stages of design.

Requirements

Design Problem Design Solution

Solution
Implementation

1. Recall the recursive definition of [Shaw and Garlan 1996].
8 Introduction to Software Architecture and Other Confusing Topics



Communicating Software Designs
SIDEBAR
Note that there is no waterfall 
approach implied by the figure. Many 
complex relationships exist between 
all the phases in multidimensional 
ways and as such cannot be easily 
visualized.

FIGURE 3. Phases in System Design

Communicating Software Designs

Given the sheer complexity of the above notional design process, we need 
to understand how to turn these potentially random, stochastic, and chaotic 
processes into something orderly. As we will see below, the key to creating 
order is human communication that in turn will preserve the integrity of the 
design throughout the design process.

Achieving Conceptual 
Integrity in Software 
Design1

In Chapter 4 of [Brooks 1975], the author asserts that good architecture 
results from preserving the conceptual integrity of the design throughout the 
development process. Additionally, he asserts that preserving integrity can 
only occur if clear communication between the participants occurs. He also 
states that organizations form around lines of communication (not the other way 
around), therefore, communication structures need to be designed so that they 
form the appropriate organizations. Furthermore, he asserts that good design 
cannot result from a democratic approach—it requires an aristocracy. Simply 
put, I agree, and in my opinion, this book is one of the most essential readings 
for any software developer or manager of software developers.

READING ASSIGNMENT 6
Read Chapters 4 and 5 of [Brooks 
1975].

So if we have an aristocracy, who gets the title of Lord of the Dance? Clearly 
the answer is the System Architect. Now matter how big or small the project is, 
the role must be filled. The sole responsibility of the system architect is to 
ensure that the conceptual integrity of the design is maintained.

Requirements

Design Problem Design Solution

Solution
Implementation

Domain Understanding

Conceptual

Subsystem

Detailed

Implementation

Requirements

Design Problem Design Solution

Solution
Implementation

Requirements

Design Problem Design Solution

Solution
Implementation

Requirements

Design Problem Design Solution

Solution
Implementation

Requirements

Design Problem Design Solution

Solution
Implementation

1. In the context of C4ISR in the DoD, they have established extremely verbose notions of what the design deliverables are 
and they call it the C4ISR Architecture Framework V2.0. Essentially, they have created a set of documentation standards 
and deliverables that are required by all C4ISR systems. They call out three architecture views: the Operational View, 
the Technical View, and the System View.
Introduction to Software Architecture and Other Confusing Topics 9



Communicating Software Designs
READING ASSIGNMENT 7
Read Chapter 13 of [Cooper 1999].

So you may ask why is design so important in software? I will never be able to 
answer the question better than Alan Cooper [Cooper 1999]. A managed pro-
cess is required to effectively execute design that is, in turn, required to pre-
serve integrity that, in turn, results in architecture that lasts. Specific kinds of 
team organizations will be addressed later in the readings.

A Perspective Outside 
Software

Drawing on our building analogy, the blue prints of a building describe an 
abstraction of parts of the design of a building, however, the blue prints are not 
complete in themselves. First, blue prints come in plan and elevation with dif-
ferent levels of detail (e.g. 1/4” and 1/8” scale). They are intended to communi-
cate information at different levels of abstraction.1 

Additionally, blue prints are supplemented with construction specifications 
that laboriously detail every item that will go into the final product. For exam-
ple, the kinds of carpeting, masonry, concrete strength and color must all be 
enumerated both in the construction specifications as well as in the drawings. 
The items in the specifications and the drawings must also match exactly. So, if 
the architect draws something in the blue prints but does not specify it in the 
specifications, they must absorb the cost, and vice versa.

Describing Software 
Designs

So, where can we find a similar notational mechanism in software design? I 
hope that class diagramming notations, as found in UML, jump out at you. 
However, it is important to understand that these notations are not architecture, 
rather they are descriptions and communicate only a specific part of the design 
just as blue prints only communicate specific parts of the design. Both kinds of 
notations must be supplemented with other descriptions. Often times only nat-
ural language will suffice.

An excellent example of this phenomenon can be found on the book cover 
of [Larman 1998] where it very clearly shows that we use notation as abstrac-
tions to help communicate about things but these communications are not the 
things themselves. Figure 4 shows a picture that is similar to [Larman 1998]. 
This reference is an excellent source for understanding how notation can be a 
helpful abstraction mechanism within the context of everyday software devel-
opment.

1. Blue prints have evolved over thousands of years of experimentation and are 
intended to communicate a precise and common understanding to skilled practitio-
ners.
10 Introduction to Software Architecture and Other Confusing Topics



Communicating Software Designs
FIGURE 4. Notation as Abstraction

Current notational systems, including the popular UML, suffer from some 
important problems. Unlike other notational systems, software diagramming 
systems suffer from too much ambiguity. To make this case, let’s look at a sim-
ple example. Figure 5 show two classes A and B as a subclass of A. Additionally, 
A is shown to implement the interface I. Given this example, we can now start 
asking questions about what the diagrams describe by asking the following 
questions:

FIGURE 5. Ambiguity in Software Notation

• What happens to the definition of the method m? Does B replace m or are 
they both available?

• What happens to the definition of the attribute c? Does B override c or are 
both cs available?

• How does the method n from interface I affect classes A and B? Is n inherited 
or must A and B conform to I?

The answers to the above questions are simple — it depends on the lan-
guage they are intended to represent. As an implication, these class diagrams 
are abstractions of a type system in some programming language. Furthermore, 
these class abstractions can only have unambiguous meaning if the notions they 
represent have well-defined implementations and exist before code generation 
occurs. However, this requires additional information that is not captured in 
the diagrams.

Bicycle

Seat Wheel

This is not a bicycle This is not a bicycle

A

c

m

B

c

m

I

n

Introduction to Software Architecture and Other Confusing Topics 11



A Notional Software Development Process for Design and Implementation
An additional implication of these types of notational systems is that they 
represent the static aspect of class structure and therefore by any definition can-
not be an architecture. It should be painfully obvious now that class diagrams 
communicate a small aspect of design and ignore, rightly or wrongly, many 
other important aspects of design communication — particularly the behavioral 
aspects of classes, for example using UML stereotypes.

Matching Notation and 
Abstraction Levels

Given that a significant number of abstraction levels exist during design, it 
becomes increasingly important that we understand how notation communi-
cates the appropriate meaning at its particular level in the abstraction spectrum. 
However, we currently do not have such notations available to use. We need to 
either impose convention on existing tools and methods (e.g. tailored Rational-
Rose and UML), or we need create notations sometimes on-the-fly.

If we do not have appropriate notations, we cannot communicate design 
adequately. What is important about notation is that it needs to have a well-
defined place in the development life-cycle of software. To that end, we need to 
turn our attention to development activities.

A Notional Software Development Process for Design 
and Implementation

To put the material covered so far into more accessible terms, we need to 
shift the focus of the course to more tangible topics. This section discusses the 
notions of classes, design patterns, and frameworks and how the construction 
of these design elements can be integrated into the software design process.

Synthesis in Software 
Design

Assuming that we have sufficiently decomposed a problem into the rele-
vant parts, we can then synthesis software systems by combining classes into 
patterns, combining patterns into frameworks, and combining frameworks into 
an architecture. A simplified notion of the approach is shown in Figure 6.

FIGURE 6. Synthesis of Software Systems

READING ASSIGNMENT 8
Read Chapter 4 of [Meyer 1988].

While most people believe they know what a class is, it is very likely that 
they will use the definition of a type from a programming language rather than 
an abstract data type (ADT) realized as a type in a programming language — usu-
ally object-oriented languages. In other words, classes are ADT realizations and 
objects are realizations (i.e. instances) of a class. What does that mean to you and 

CLASSES ⇒ DESIGN PATTERNS ⇒ FRAMEWORKS ⇒ ARCHITECTURE
12 Introduction to Software Architecture and Other Confusing Topics



A Notional Software Development Process for Design and Implementation
me? The key distinction is that when you specify the ADT you need to know 
and specify what the contractual obligations are. In other words, we need to sup-
port programming-by-contract which is eloquently covered by [Meyer 1988].

READING ASSIGNMENT 9
Read Chapter 1 of [Gamma et al. 
1995].

Given that we can now nicely define and build classes in programming lan-
guages, we can constrain the construction of classes using a clear understand-
ing of a design problem and design solution. The seminal work describing this 
notion is of course the Design Patterns reference [Gamma et al. 1995].

Given that we can define and implement design patterns, we need be able 
to combine them in interesting and useful ways. A significant body of work has 
been done describing and implementing such combinations, and the term that 
has emerged is frameworks or domain-specific application frameworks. This defini-
tion was stated in the [Gamma et al. 1995] reading and has been generally 
accepted as a working definition.

READING ASSIGNMENT 10
Read the paper by [Fayad and 
Schmidt 1997] and the paper by 
[Bäumer et al. 1997].

However, to better understand the implications of combining design pat-
terns into frameworks, a better understanding of frameworks is needed. Addi-
tionally, using multiple frameworks together in a single software system can be 
quite challenging and requires a clear notion (i.e. conceptual integrity) of what 
the overall design principles are.

An Organizing Principle 
for People

Because software development is a human activity, we need to understand 
how people can work effectively together to produce software. It is important to 
point out that there is no easy answer to this question, but it is clear that as the 
complexity of the problem increases, the organizational structure needs to 
change. Good system designers assess the complexity of the problem at hand 
and formulate an appropriate organizational structure.

READING ASSIGNMENT 11
Read Chapters 3, 7, and 11 of [Brooks 
1975].

A fundamental shift in how we organize software developers and manag-
ers is needed and ironically has been pointed out almost 30 years ago. The 
notion of a surgical team was pointed out by [Brooks 1975], and has both been 
universally accepted as one of the best approaches and ignored by the commu-
nity. The lack of acceptance is probably related to two causes the first of which 
is university neglect — they do not tell people about it. The second cause is 
probably due to the fact that an explanation of how to construct a surgical team 
in-the-large has not been developed. So, a first cut at this is shown in Figure 7. 
Note that the center of the universe revolves around a software architect. Also 
note that the dashed arrows represent where domain modeling occurs as part of 
the design process.
Introduction to Software Architecture and Other Confusing Topics 13



A Notional Software Development Process for Design and Implementation
FIGURE 7. Interactions Between Teams

Teams and Software 
Development

Now that we know we need teams (as if we didn’t already), we need some 
notional description of how these teams communicate and what they produce 
as a result of the work they do. Such a process is shown in Figure 8. Subject mat-
ter experts help software architects formulate requirements that are suitable to 
develop into well-defined design problems. Information modelers, in conjunction 
with the software architect, take these design problems and realize alternative 
design solutions. Then, software implementation teams take the selected design 
solutions and realize implementations. As the development effort progresses, 
all these activities occur simultaneously at varying levels of intensity. Therefore, 
any labels such as waterfall, spiral, or iterative really do not capture the essence of 
the process.

Subject Matter 
Expert Teams

Implementation 
TeamsModeling Teams

Software Architect

Toolsmith Teams
14 Introduction to Software Architecture and Other Confusing Topics



A Notional Software Development Process for Design and Implementation
FIGURE 8. Software Design Processes

Given this picture, we can characterize Structure Analysis/Structured 
Design (SASD) as starting the process by laying out requirements (the top left 
corner) and then using implementation technologies (the lower right corner) to 
build up design elements into a solution. The problem with this approach is 
that as requirements change many of the existing design solutions must be 
thrown away because they no longer satisfy the design problem at hand (i.e. 
they are function-centric). In other words, this approach works well when the 
requirements, design problems, and design solutions are well-known, but is not 
flexible for problems that are less well-understood and undergo active problem 
discovery.

On the other hand, object oriented techniques, when properly used, allow 
software developers to more easily preserve the conceptual integrity of design 
by 1) focusing on the information (i.e. data-centric) and 2) preserving familiar 
user abstractions from requirements to implementation. Another way of stating 
the basic difference between object-based approaches is:

Ask not what a system does, ask what it does it to.

READING ASSIGNMENT 12
Read Chapters 7 and 8 of [Cooper 
1999].

Now, many techniques that espouse to be object-oriented are in fact a wolf 
in sheep’s clothing. The most ravenous example unfortunately is CORBA and 
the CORBAservices. Using CORBA or CORBAservices often forces a process 
that results in an object-oriented encapsulation of SASD. Why is this so? 
Because it asserts the notion that encapsulation can be done without knowing 

SUBJECT

Method A()
Method B()
Method C()
Method D()

ClassName

Method A()
Method B()
Method C()
Method D()

ClassName

Banking Screen: Account Applet
JohnDoe:
Consumer

Banking Screen: Account Applet
JohnDoe:
Consumer

Method A()
Method B()
Method C()
Method D()

ClassName

Method A()
Method B()
Method C()
Method D()

ClassName

INFORMATION

SOFTWARE 

MODELER

IMPLEMENTER

MATTER
EXPERT 

CONSTRAINTS

CONSTRAINTS REFINES
ABSTRACTS

GENERALIZES

UNITS OF
CAPABILITY

IMPLEMENTATION
TOOLS/ LEGACY CODE

DESIGN PATTERNS
APPLICATION FRAMEWORKS

SOFTWARE

CAPABILITIES
IMPLEMENTATION
Introduction to Software Architecture and Other Confusing Topics 15



Reuse Abuse
the semantics or behavior of system elements, that is, just create an interface, 
and we will worry about the implementation later1. We have just defined func-
tional decomposition in OO clothes. The fact that most people accept this as an 
OO technique is rooted in the culture of software and is nice described by [Coo-
per 1999].

Reuse Abuse
READING ASSIGNMENT 13
Read the paper by [Kruger 1992].

One of the most widely touted benefits of object oriented approaches is the 
ability to reuse things. However, it is unfair to talk about software reuse without 
really understanding what reuse is. To this end, a comprehensive discussion of 
reuse is in order and is given by [Kruger 1992] — enough said.

Accidental Complexity An interesting phenomenon occurs when people try to combine existing 
software elements together — unexpected things happen. Many times we do 
not even know that these things happen until long after a system is deployed. 
The term for this phenomenon is called accidental complexity and was coined by 
[Schmidt and Fayad 1997]; this is the technical term for the problems associated 
with Structured Analysis/Design. They provide an excellent summary of how 
this complexity is introduced and how it might be dealt with.

READING ASSIGNMENT 14
Read the papers [Schmidt and Fayad 
1997], [Snyder and Peck 1998].

Optional readings are [Wallace and 
Wallnau 1996] and [Kleindienst et al. 
1996] and can be found in the Section 
“Supplemental Readings”

An example of how this complexity can be explicitly addressed by design is 
covered by [Snyder and Peck 1998]. The problem described in this paper dis-
cusses a fairly common integration problem, namely, how to construct a three-
tier information system that uses both an ODBMS and CORBA as middleware. 
Several key integration problems are described with solutions.

Architectural Mismatch Now that we have seen that significant difficulties can occur by reusing 
software elements, we need to better understand the reasons these difficulties 
exist. The paper by [Garlan et al. 1995] gives a good characterization of these 
associated issues and provides the appropriate term architectural mismatch.

READING ASSIGNMENT 15
Read the paper by [Garlan et al. 
1995].

It is important to notice here that mismatch is discussed in the context of 
reusing existing elements, that is, software elements that actually exist. It is 
important to relate this perspective back to the working definition of software 
architecture in this course — something that exists in the world.

1. Specific, in-depth examples are needed to completely understand the issues and can 
be found in the optional READING ASSIGNMENT 14.
16 Introduction to Software Architecture and Other Confusing Topics



The Potential for Automation
Reuse and Abstraction Reuse occurs differently at different levels of abstraction in both design and 
implementation. Therefore, we need very different design and engineering 
techniques. For example, reusing a class is much different than reusing a design 
pattern as it is with patterns.

Reusing a design is much harder as the complexity of the reuse elements 
increases because the sheer number of element interactions to consider is larger. 
It should also be clear that architectures are only reusable if whole systems 
become a subsystem in something else, that is, a working system is integrated 
into a larger whole.

The Potential for Automation

It is possible to use software systems to help us formalize our approach to 
software development. The real question is where can automation help and on 
what kinds of problems. As it turns out, a particular kind of architectural style 
is incredibly common and relatively well understood namely the Shared Infor-
mation System.1

The earliest example of a well-defined shared information system is the 
classical relational database client-server software systems. To help automate 
the retrieval of information in this environment, we can embed queries into pro-
gramming language source code using the Embedded SQL facilities of the sup-
plied database system. We can then use a preprocessor to turn the Embedded 
SQL into procedural calls of the native language and compile the source code 
into an executable. So, we have automated some aspect of the client’s informa-
tion pull from the database.

Shared Information 
System Evolution

As systems in the traditional client-server environment become more com-
plex, accidental complexity was introduced because certain computations we put 
in the clients and were not available in the server2. A good example of this issue 
is the calculation of overtime pay for a payroll system. The computation of the 
overtime must be placed in all client applications rather than made available via 
the server even though we clearly want a universal notion of overtime pay to be 
maintained. If we change our calculation of overtime, we would like to change 
it in only in one place and make the new result available to all existing applica-
tions without requiring client modification.

1. Chapter 4 of [Shaw and Garlan 1996] cover this style in detail.
2. In fact, a term “impedance mismatch” has been coined to describe the accidental com-

plexity.
Introduction to Software Architecture and Other Confusing Topics 17



The Potential for Automation
In response to the the above problems, the next logical evolution of the cli-
ent-server approach is to insert a level of indirection between the client and 
server to allow for each to have different rates of modification. Two important 
architectural styles have emerged from this perspective — N-tier architectures 
and mediated architectures [Wiederhold 1995]. Essentially, we create a “middle 
tier” that allows us to present functionality greater than the server itself can 
provide thereby allowing the overtime pay calculation to reside in a single 
place. However, we do not have full access to the server environment and can-
not leverage the availability of the server’s information to our advantage unless 
we explicitly build it in. So, we have a more maintainable system, but it is not as 
good as we might expect. While this approach significantly improves the 
robustness of the resulting system, accidental complexity is still introduced 
with this approach.

A Different Approach While current technologies and approaches such as database systems and 
CORBA provide partial solutions for constructing shared information systems, 
a comprehensive and reliable approach is not currently available because many 
important details are not formally captured and are left as implementation exer-
cises. Essentially, these solutions limit their scope to structural or syntactic 
descriptions. What is lacking is the focus on the semantic and behavioral con-
tent of information. To compensate for these deficiencies, many differing tech-
nologies are combined using either informal or ad hoc methods that naturally 
evolve into monolithic systems that are difficult to maintain or extend.

Current academic research has shown that to make the next “leap” in tech-
nology for building shared information systems, an approach based on more 
formal methods is needed because automation requires formalization. This 
research has resulted in a new technology area called conceptual modeling envi-
ronments (CME) where, the basic approach is to provide an environment in 
which a formal description of a shared information model can be developed inde-
pendently from underlying implementation technologies and software architec-
tures (recall the software process in Figure 8). Once a model is developed, 
information servers can be automatically constructed that are provably correct 
and targeted towards specific software architectures and implementation tech-
nologies. Additionally, given such a model, sharing information with (or inte-
grating) existing or new applications into the shared information base can also 
be automated using formal integration specification languages that complement the 
shared models.
18 Introduction to Software Architecture and Other Confusing Topics



Concluding Thoughts
READING ASSIGNMENT 16
Optionally read [Snyder and Muckel-
bauer 1999]. This paper provides an 
example of how this approach can be 
used in a practical application.

Because this topic is rather lengthy, the details of this approach are not 
described here. However, two important references provide more depth. First, 
[Snyder and Muckelbauer 1999] provides a description of how CMEs can be 
used in a specific kind of problem thereby providing some concreteness to the 
concepts. For a comprehensive description of this approach, see [Snyder 1998].

Architectural Style and 
Description Languages

To characterize systems “in the large”, we need to bring a higher degree of 
formalism to the table. However, we are still rather primitive as a discipline in 
this respect. In the past few years, important progress has been made to help 
characterize overall system designs.

READING ASSIGNMENT 17
Optionally read Chapters 6 and 7 of 
[Shaw and Garlan 1996].

Before reading literature from this area, it is important to understand that 
two kinds of formalisms exist 1) ways of describing systems as they are (i.e. the 
natural world) and 2) describing systems as they ought to be (i.e. the artificial 
world — recall “The Science of Design” [Simon 1981]). As such, two classes of 
notations have emerged to address the above difference. Notations for architec-
tural style capture the natural world while architecture description languages 
(ADLs) are intended to capture the artificial world. These concepts are covered 
in Chapters 6 and 7 of [Shaw and Garlan 1996].

The definitions provided in the current literature are still subject to ongoing 
research and development, and as such, do not have the clarity we would like to 
have as in other areas. For example, many of the accounts of “desirable” ADL 
features have a significant overlap with CMEs. But, CMEs are not ADLs. We do 
not have the space to prove that assertion here, but the careful practitioner will 
discover this difference by careful thought and reflection.

Concluding Thoughts

At this point you should be able to understand the difference between 
architecture, design, and engineering and why they are all important in realiz-
ing software systems. Additionally, you should be able to clearly articulate why 
using engineering techniques to solve a design problem is bad, and vice versa.

The pursuit of new software technologies and development techniques is 
essential to provide more design solution alternatives over time that are more 
cost-effective, reliable, and scalable. Additionally, these new technologies need 
to be motivated from a clear understanding of an overall real-world problem 
and how existing technologies fail to provide adequate solutions especially as 
the assumptions of existing solutions fail to hold true. Lastly, we as practitio-
ners need to understand the complexities of the interaction between the physi-
Introduction to Software Architecture and Other Confusing Topics 19



Annotated References
cal world and the artificial world — never forgetting that the ultimate aim is to 
provide human-centric solutions to system design.

Annotated References

[Akin et al. 1995] Akin, Ö., Sen, R., Donia, M., and Y. Zhang (1995). “SEED-Pro: Computer-Assisted 
Architectural Programming” Journal of Architectural Engineering. 1(4). pp. 153-
161.

This paper describes how building designers attempt to formalize some user require-
ments (called an architectural program) into specifications that can lead to a design 
problem.

[Bäumer et al. 1997] Bäumer, D., Gryczan, G., Knoll, R., Lilienthal, C., Riehle, D., and H. Zülllighoven 
(1997). “Framework Development for Large Systems” Communications of the 
ACM, 40(10) pp. 52-59.

This paper provides an example of how to use abstraction and frameworks to provide 
flexible system development.

[Brooks 1975] Brooks, F. (1975). The Mythical Man-Month: Essays on Software Engineering. 
Reading: Addison-Wesley.

This is by far the most insightful text about how software development gets really 
messed up and why. Additionally, the author explains rational approaches to getting 
people to work together productively in a software development effort. There is a sec-
ond edition to this book that has an additional four chapters on more modern issues.

[Cooper 1999] Cooper, A. (1999). The Inmates Are Running the Asylum: Why High-Tech Products 
Drive Us Crazy and How to Restore the Sanity. Indianapolis: Sams

This book is probably the only book that explains the business case for user-centered 
system development including specific citations on using design to preserve the con-
ceptual integrity of a system. This book is critical for understanding how not think 
about software.

[Fayad and Schmidt 1997] Fayad, M. and D. Schmidt (1997). “Object Oriented Application Frameworks” 
Communications of the ACM, 40(10). pp. 85-87.

An excellent summary of the pitfalls and benefits encountered in try to build systems 
for reuse using object-oriented approaches.
20 Introduction to Software Architecture and Other Confusing Topics



Annotated References
[Flemming and Chien. 1995] Flemming, U. and S. Chien (1995). “Schematic Layout Design in SEED 
Environment” Journal of Architectural Engineering. 1(4). pp 162-169.

This paper shows how that a building design can use a formal model of a schematic 
layout problem to generate a large number of design solutions (called layouts) that 
would not be possible if done by hand.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R. and J. Vlissides (1995). Design Patterns: Elements 
of Reusable Object Oriented Software. Reading: Addison-Wesley.

This book is the standard reference for 1) showing how design problems and design 
solutions are realized at certain levels of detail in the design process, and 2) how to 
catalog problem descriptions and solutions into an encyclopedic form.

[Garlan et al. 1995] Garlan, D., Allen, R., and J. Ockerbloom (1995). “Architectural Mismatch or Why It’s 
Hard to Build Systems Out of Existing Parts” in Proceedings of the 17th 
International conference on Software Engineering, April 24 - 28, 1995, Seattle, 
WA USA. pp. 179-185.

This is an earlier version of a similar paper in IEEE Software, 12(6), November 1995, 
called “Architectural Mismatch: Why Reuse is So Hard”.

[Kruger 1992] Krueger, C. (1992). “Software Reuse” ACM Computing Surveys. 24(2).

This is the definitive survey on software reuse to date.

[Larman 1998] Larman, C. (1998). Applying UML and Patterns: An Introduction to Object-Oriented 
Analysis and Design.

This text is one of best texts I have seen that show how to use design patterns in the 
context of a UML environment to realize software solutions to many interesting prob-
lems. It is full of example patterns that are usable in everyday system development.

[Meyer 1988] Meyer, B. (1988). Object Oriented Software Construction. Prentice-Hall, Englewood-
Cliffs, NJ.

If you are looking for a text on understanding what object-oriented programming and 
software construction is about, this is the book. The two most important concepts 
communicated in this book are programming by contract and how to use a language 
to support design/implementation under programming by contract approach.

[Neumann 1996] Neumann, P. G. (1996). “Linguistic Risks” Communications of the ACM, 39(5), p. 
154.

This short interlude on the use of language in computer science is quite neat.
Introduction to Software Architecture and Other Confusing Topics 21



Supplemental Readings
Supplemental Readings

[Schmidt and Fayad 1997] Schmidt, D. and M. Fayad (1997). “Lessons Learned Building Reusable OO 
Frameworks for Distributed Software” Communications of the ACM, 40(10). pp. 
85-87.

An excellent summary of the pitfalls and benefits encountered in try to build systems 
for reuse using object-oriented approaches.

[Shaw and Garlan 1996] Shaw, M. and D. Garlan (1996). Software Architecture: Perspectives on an Emerging 
Discipline. Prentice-Hall.

This text was developed as a result of a software architecture course at the Software 
Engineering Institute at Carnegie Mellon University. It is intended to be used in such 
a course, but stops short of how the covered concepts are used in everyday develop-
ment.

[Simon 1981] Simon, H. A. (1981). The Sciences of the Artificial (Second Edition). Cambridge: The 
MIT Press

This is an exceptional book that explains the difference between many different fields 
of study and how things that people make are treated very much differently from try-
ing to describe the physical world as it is.

[Snyder and Peck 1998] Snyder, J. and C. Peck (1998). PicoDDB. ATL Internal Technical Report. Delivered 
under program contract for the DARPA-sponsored DDB program. December 24, 
1998.

This document describes the design rationale for building a three-tier information sys-
tem using CORBA as middleware for an OODMBS.

[Clements and Northrop 1996] Clements, P. C. and L. M. Northrop (1996). Software Architecture: An Executive 
Summary. Technical Report CMU/SEI-96-TR-003. Software Engineering 
Institute, Carnegie Mellon University, Pittsburgh, PA. 15213.

[Kleindienst et al. 1996] Kleindienst, J., F. Plasil, and P. Tuma (1996). “Lessons Learned from Implementing 
the CORBA Persistent Object Service” Proceedings OOPSLA ‘96. ACM 
SIGPLAN Notives, 31(10), pp 150-167. ACM Press, Reading, MA.

[Monroe et al. 1997] Monroe, R., Kompanek, A., Melton, R., and D. Garlan (1997). “Architectural Styles, 
Design Patterns, and Object-Oriented Programming” IEEE Software, 14(1), 
January - February 1997.
22 Introduction to Software Architecture and Other Confusing Topics



Supplemental Readings
[Meyer 1997] Meyer, B. (1997). Object Oriented Software Construction: Second Edition. Prentice-
Hall, Englewood-Cliffs, NJ.

[Snyder 1998] Snyder, J. (1998). Conceptual Modeling and Application Integration in CAD: The 
Essential Elements. Ph. D. Dissertation in Computational Design. Department of 
Architecture and Engineering Design Research Center. Carnegie Mellon 
University. Pittsburgh, PA.

[Snyder and Muckelbauer 1999] Snyder, J. and A. Muckelbauer (1999). Dynamic Data Distribution in Model-Based 
Battle Command. ATIRP Factor 3a Research Plan. LM-ATL Technical Report.

[Wallace and Wallnau 1996] Wallace, E. and K. Wallnau (1996). “A Situated Evaluation of the Object Management 
Group’s (OMG) Object Management Architecture (OMA)”. Proceedings 
OOPSLA ‘96. ACM SIGPLAN Notives, 31(10), pp 168-178. ACM Press, Reading, 
MA

[Wiederhold 1995] Wiederhold, G. (1995). “Mediation in Information Systems” ACM Computing 
Surveys, 27(2), New York: ACM Press, pp. 265-267.
Introduction to Software Architecture and Other Confusing Topics 23


	Who Should Read This?
	The Importance of Terminology
	An Initial Definition for Software Architecture
	Architecture and Buildings
	Architecture and CPUs
	Architecture and Software

	A Characterization of Design
	Design as Problem Solving
	Iteration in Design Processes

	Communicating Software Designs
	Achieving Conceptual Integrity in Software Design
	A Perspective Outside Software
	Describing Software Designs
	Matching Notation and Abstraction Levels

	A Notional Software Development Process for Design and Implementation
	Synthesis in Software Design
	An Organizing Principle for People
	Teams and Software Development

	Reuse Abuse
	Accidental Complexity
	Architectural Mismatch
	Reuse and Abstraction

	The Potential for Automation
	Shared Information System Evolution
	A Different Approach
	Architectural Style and Description Languages

	Concluding Thoughts
	Annotated References
	Supplemental Readings

